Use compact parts to store columns together on disk
ClickHouse is a columnar database, meaning that every column gets stored in disk independently. This makes it very efficient when you only want to read data from a single column.
However, this comes at a cost, operations affecting multiple columns become more expensive. But there is a way to force columns to get stored together in disk, which can improve performance when reading columns sequentially.
We can take advantage of compact parts, to validate the idea we'll create two tables with 90 columns each, forcing one of them to use compact parts:
DROP DATABASE IF EXISTS wide_compact;
CREATE DATABASE wide_compact;
CREATE TABLE wide_compact.compact_parts
ENGINE = MergeTree
ORDER BY (c1, c2)
SETTINGS min_rows_for_wide_part = 1000000000 AS
SELECT *
FROM generateRandom('c1 UInt32, c2 UInt64, s1 String, c3 UInt32, c4 UInt64, s2 String, c5 UInt32, c6 UInt64, s3 String, c7 UInt32, c8 UInt64, s4 String, c9 UInt64 , c10 UInt64 , c11 UInt64 , c12 UInt64 , c13 UInt64 , c14 UInt64 , c15 UInt64 , c16 UInt64 , c17 UInt64 , c18 UInt64 , c19 UInt64 , c20 UInt64 , c21 UInt64 , c22 UInt64 , c23 UInt64 , c24 UInt64 , c25 UInt64 , c26 UInt64 , c27 UInt64 , c28 UInt64 , c29 UInt64 , c30 UInt64 , c31 UInt64 , c32 UInt64 , c33 UInt64 , c34 UInt64 , c35 UInt64 , c36 UInt64 , c37 UInt64 , c38 UInt64 , c39 UInt64 , c40 UInt64 , c41 UInt64 , c42 UInt64 , c43 UInt64 , c44 UInt64 , c45 UInt64 , c46 UInt64 , c47 UInt64 , c48 UInt64 , c49 UInt64 , c50 UInt64 , c51 UInt64 , c52 UInt64 , c53 UInt64 , c54 UInt64 , c55 UInt64 , c56 UInt64 , c57 UInt64 , c58 UInt64 , c59 UInt64 , c60 UInt64 , c61 UInt64 , c62 UInt64 , c63 UInt64 , c64 UInt64 , c65 UInt64 , c66 UInt64 , c67 UInt64 , c68 UInt64 , c69 UInt64 , c70 UInt64 , c71 UInt64 , c72 UInt64 , c73 UInt64 , c74 UInt64 , c75 UInt64 , c76 UInt64 , c77 UInt64 , c78 UInt64 , c79 UInt64 , c80 UInt64 , c81 UInt64 , c82 UInt64 , c83 UInt64', 0, 30, 30)
LIMIT 2000000;
CREATE TABLE wide_compact.wide_parts
ENGINE = MergeTree
ORDER BY (c1, c2) AS
SELECT *
FROM generateRandom('c1 UInt32, c2 UInt64, s1 String, c3 UInt32, c4 UInt64, s2 String, c5 UInt32, c6 UInt64, s3 String, c7 UInt32, c8 UInt64, s4 String, c9 UInt64 , c10 UInt64 , c11 UInt64 , c12 UInt64 , c13 UInt64 , c14 UInt64 , c15 UInt64 , c16 UInt64 , c17 UInt64 , c18 UInt64 , c19 UInt64 , c20 UInt64 , c21 UInt64 , c22 UInt64 , c23 UInt64 , c24 UInt64 , c25 UInt64 , c26 UInt64 , c27 UInt64 , c28 UInt64 , c29 UInt64 , c30 UInt64 , c31 UInt64 , c32 UInt64 , c33 UInt64 , c34 UInt64 , c35 UInt64 , c36 UInt64 , c37 UInt64 , c38 UInt64 , c39 UInt64 , c40 UInt64 , c41 UInt64 , c42 UInt64 , c43 UInt64 , c44 UInt64 , c45 UInt64 , c46 UInt64 , c47 UInt64 , c48 UInt64 , c49 UInt64 , c50 UInt64 , c51 UInt64 , c52 UInt64 , c53 UInt64 , c54 UInt64 , c55 UInt64 , c56 UInt64 , c57 UInt64 , c58 UInt64 , c59 UInt64 , c60 UInt64 , c61 UInt64 , c62 UInt64 , c63 UInt64 , c64 UInt64 , c65 UInt64 , c66 UInt64 , c67 UInt64 , c68 UInt64 , c69 UInt64 , c70 UInt64 , c71 UInt64 , c72 UInt64 , c73 UInt64 , c74 UInt64 , c75 UInt64 , c76 UInt64 , c77 UInt64 , c78 UInt64 , c79 UInt64 , c80 UInt64 , c81 UInt64 , c82 UInt64 , c83 UInt64', 0, 30, 30)
LIMIT 2000000;
SELECT '---- Compact';
SELECT
partition,
name,
part_type,
level,
rows,
formatReadableSize(bytes_on_disk) AS size,
modification_time
FROM system.parts
WHERE (table = 'compact_parts') AND active
ORDER BY
partition ASC,
modification_time ASC
FORMAT PrettyCompact;
SELECT '---- Wide';
SELECT
partition,
name,
part_type,
level,
rows,
formatReadableSize(bytes_on_disk) AS size,
modification_time
FROM system.parts
WHERE (table = 'wide_parts') AND active
ORDER BY
partition ASC,
modification_time ASC
FORMAT PrettyCompact;
❯ cat wide_compact.sql | ./clickhouse client -h clickhouse-01 -mn
---- Compact
┌─partition─┬─name──────┬─part_type─┬─level─┬────rows─┬─size───────┬───modification_time─┐
│ tuple() │ all_1_1_0 │ Compact │ 0 │ 1048545 │ 715.23 MiB │ 2022-02-25 16:06:48 │
│ tuple() │ all_2_2_0 │ Compact │ 0 │ 951455 │ 649.00 MiB │ 2022-02-25 16:06:50 │
└───────────┴───────────┴───────────┴───────┴─────────┴────────────┴─────────────────────┘
---- Wide
┌─partition─┬─name──────┬─part_type─┬─level─┬────rows─┬─size───────┬───modification_time─┐
│ tuple() │ all_1_1_0 │ Wide │ 0 │ 1048545 │ 715.31 MiB │ 2022-02-25 16:06:51 │
│ tuple() │ all_2_2_0 │ Wide │ 0 │ 951455 │ 649.07 MiB │ 2022-02-25 16:06:53 │
└───────────┴───────────┴───────────┴───────┴─────────┴────────────┴─────────────────────┘
When you read a single column, there's little different between the two strategies, they're both super fast...
❯ ./clickhouse benchmark <<< "SELECT c1 FROM wide_compact.wide_parts LIMIT 1000" --cumulative --max_threads 1 -i 500
Loaded 1 queries.
Queries executed: 500.
localhost:9000, queries 500, QPS: 1519.752, RPS: 1519752.220, MiB/s: 5.797, result RPS: 1519752.220, result MiB/s: 5.797.
❯ ./clickhouse benchmark <<< "SELECT c1 FROM wide_compact.compact_parts LIMIT 1000" --cumulative --max_threads 1 -i 500
Loaded 1 queries.
Queries executed: 500.
localhost:9000, queries 500, QPS: 1718.089, RPS: 14074585.683, MiB/s: 53.690, result RPS: 1718089.073, result MiB/s: 6.554.
...but when you read all columns, the compact parts table is way faster!
❯ ./clickhouse benchmark <<< "SELECT * FROM wide_compact.wide_parts LIMIT 1000" --cumulative --max_threads 1 -i 500
Loaded 1 queries.
Queries executed: 500.
localhost:9000, queries 500, QPS: 62.517, RPS: 62516.895, MiB/s: 44.351, result RPS: 62516.895, result MiB/s: 44.351.
❯ ./clickhouse benchmark <<< "SELECT * FROM wide_compact.compact_parts LIMIT 1000" --cumulative --max_threads 1 -i 500
Loaded 1 queries.
Queries executed: 500.
localhost:9000, queries 500, QPS: 223.399, RPS: 1830084.516, MiB/s: 1298.450, result RPS: 223398.989, result MiB/s: 158.483.
That's 223 QPS with compact parts versus 62 without, a 270% improvement!